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Abstract. All classical Lie algebras can be realized la Schwinger u1 terms of fermionic 
oscillators. We show that the same can be done for their q d e f o m d  counterparrs by simply 
replacing the fermionic oscillators with anyoNc ones defined on a two-dimensional lattice. The 
deformation parameter q is a phase related to the anyonic statistical parameter. A crucial r61e 
in this construction is played by a sort of bosoniration formula which gives the generaton of 
the quantum algebras in terms of the undeformed ones. The entire procedure works even an 
onedimensional chains; in such a case q can also be real 

1. Introduction 

Quasitriangular Hopf algebras [ I 4 1  are currently being explored with a view to new 
applications in several areas of physics [5]. Interesting examples of this structure 'are 
deformations of classical Lie algebras and Lie groups [14, where a parameter q, real or 
complex, is introduced in such a way that in the limit q -+ 1 one recovers the non-deformed 
structure. ~. 

There has been an intense activity in this area in the last few years and recently an 
interesting connection between the quantum universal enveloping algebra U,(SU(2)) and 
anyons [6-91 has been found [lo]. It was shown to be possible to realize U,(SU(2)) by 
a generalized Schwinger construction [ 1 I], using non-local, intrinsically two-dimensional 
objects, with braiding properties, interpolating between fermionic and bosonic. oscillators, 
defined on a lattice a. These anyonic oscillators are quite different from the q-oscillators 
introduced a few years ago in order to realize the quantum enveloping algebras U,(A,), 
U&), U,(C,), U,(D,) [12-16], the quantum exceptional algebras [I71 and the quantum 
superalgebras 1181, because q-oscillators are local operators which can live in any dimension. 

The realization of U,(A,) was immediately found 1191 using a set of r + 1 anyonic 
oscillators. In this paper we generalize this construction to all deformed classical Lie 
algebras. As in [IO, 191, the deformation parameter q is connected to the statistical parameter 
U by q = exp(inw) for U,(A,), U#,), U@,) and by q = exp(2inu) for Uq(Cr). 

A unified treatment is provided by a sort of bosonization.formula which expresses 
the generators of the deformed algebras in terms of the undeformed ones. This relation 

* Work supported in p m  by Minister0 dell'Uiniversit8 e della Ricerca Scientifica e Tecnologica. 
11 E-mail addresses: frau@torino.infn.it and 31890:Frau 
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resembles the bosonization formula [20] of two-dimensional quantum field theories (QFT), 
which relates bosons and fermions through an exponential of bosonic fields, and in the same 
way looks like the anyonization of planar Qm [21]. 

The building blocks of our ‘bosonization formula’ are representations of the deformed 
algebras on each site of the lattice, which do not depend on the deformation parameter; this 
happens when all the SU(2) subalgebras relevant to the simple roots are in the spin 0 or 1/2 
representation. The fundamental representations of all classical algebras share this property, 
which for U,(A,), U,(B,), U,(Dr) follows directly from the Schwinger construction in 
terms of anyons, since these are hard-core objects; for U,(C,) the hard-core condition must 
be strengthened to prevent any two anyons, even of different kinds, from sitting on the 
same site. Moreover for U,(C,) the anyons have to he grouped into pairs: the two anyons 
of each pair have opposite statistical parameters and also produce a phase when they are 
braided with each other. 

We would like to stress that our ‘bosonization formula’ is different from the relation 
between the generators of quantum and classical algebras found a few years ago I.5.221. 
Our expression is two dimensional and non-local since it involves an exponential of the 
generators of the Cartan subalgebra weighted with the angle function defined on the two- 
dimensional lattice. As discussed in [IO], the angle function and its relevant cuts both 
provide an ordering on the lattice and allow one to distinguish between clockwise and 
counterclockwise braidings; therefore th; whole conshuction cannot be extended to higher 
dimensions. However, we remark that anyons can also be consistently defined on one 
dimensional chains: in such a case they become local objects and their braiding properties 
are dictated by their natural ordering on the line. Consequently. the whole treatment of the 
present paper and [lo, 191 works equally well on one-dimensional chains. As pointed out in 
section 6, in the one-dimensional case it is also possible to extend the construction to real 
values of the deformation parameter 4. This paper is organized as follows. In section 2 we 
review briefly the main results concerning anyonic oscillators and the lattice angle function. 
In section 3 we discuss the ‘bosonization formula’ for the quantum version of the classical 
Lie algebras. In section 4 we present the fermionic realization of the Lie algebras of type A,, 
B,, Dr and the anyonic realization of the corresponding deformed algebras and in section 5 
we extend the procedure to algebras of type C,. Section 6 is devoted to some final remark. 

2. The lattice angle function and anyonic oscillators 

In this section, following [lo], we review the construction of anyonic oscillators defined on 
a two-dimensional square lattice S2. 

Anyonic oscillators are two-dimensional non-local operators [23-27] which interpolate 
between bosonic and fermionic oscillators. On a lattice they can be constructed by means of 
the generalized Jordan-Wigner msformation [ZO], which in our case transmutes fermionic 
oscillators into anyonic ones. Its essential ingredient is the lattice angle function O(z, y) 
that was defined in a very general way in 121,241. Here we describe concisely the particular 
definition of @(a:, y) given in [lo]. 

We begin by embedding the lattice Q with spacing one into a lattice A with spacing 
E ,  which eventually will be sent to zero. Then to each point z E P we associate a cut yx. 
made with bonds of the dual lattice d from minus infinity to I* = I + o* along the x axis, 
with o* = ( f 6 , ; ~ )  the origin of the dual lattice A. We denote by zY the point a: E S2 with 
its associated cut yx. 
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Given any two distinct points x = (XI, nz) and y =~ ( y ~  , yz)  on 52, and their associated 
cuts yx and y,, in the limit E + 0 it is possible to show that [lo] 

with QYx(x, y) being the angle of the point x measured from the point y* E i\ with respect 
to a line parallel to the positive x axis. 

Equation (2.1) can be used to endow the lattice with an ordering which will be very 
useful in handling anyonic oscillators. We define x > y by choosing the positive sign in 
(2.1), i.e. 

From (2.1) and (2.2) it follows that 

0,(x, y) - Oy,(y, 2) = x for x > y. (2.1') 

Even if unambiguous, this definition of the angle O(x, y) is not unique since it depends on 
the choice of the cuts. Suppose now, instead of choosing yz, we choose for each point of 
the lattice a cut 8, made with bonds of the dual lattice i\ from plus infinity to *z along the 
x axis, with *x = x - 0'. In this case it can be shown that the relation between the angle 
of two distinct points x, y E 52 becomes [IO] 

Notice that 6ax (z, y) is now the angle of x as seen from *y E i\ with respect to a line 
parallel to the negative x axis. 

The choice of the cuts 6, would therefore induce an opposite order with respect to the 
one defined in (2.2). Keeping instead the ordering (2.2), equation (2.3) reads 

(a, y) - &,(y, z) = --K ' for a z y. (2.3') 

We can also find a relation between 0, and 6,s. Using their definitions we get [lo] 

(2.4) 

and using (2.1') and (2.4) it follows that 

6 & ( X ,  y) - O,,(y, 2) = 0 vx, y. (2.5) 

 we^ are now going to use the angle functions O,(x, y) and &(x, y) to define two 
kinds of parity related anyonic oscillators. We define anyonic oscillators of type y and 8 
as follows 

ai(aca) = Ki(ac,) ci(ac) (no sum over i) (2.6) 
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with cr, = yx or 6,. i = 1, . . . , N; the disorder operators Ki(z,) [20,28] are given by 

ni(y) = c!(Y)ci(Y) (2.8) 

where v is the statistical parameter and c i (z ) ,  ct (z )  are fermionic oscillators defined on f2 
obeying the usual anticommutation relations 

where 

1 i f z = y  

0 i f z # y .  
Wz, Y) = (2.10) 

We remark that the disorder operator Ki (2,) differs from the one defined in [lo] because 
of the subtraction of the background term 4 from the fermion occupation number ni(y). 
This does not change the result of [IO, 191 for U,(A,), but is crucial for U@,) and .Uq(&). 

Using (2.1') and (2.9) we get the following generalized commutation relations for 
anyonic oscillators of type y 

(2.1 la) 

(2.11b) 

for z > y and q = exp(inu). If z = y we have 

(2.12a) 

t (2.126) 

Equations (2.11) and (2.12) mean that anyonic oscillators are hard-core objects and obey 
q-commutation relations at different points of the lattice, but standard anticommutation 
relations at the same pointt. 

2 
(ai&)) = o 

t ai(zy)aj(zy)+aj(zy)ai(zy) = 1. 

Of course different oscillators obey the ordinary anticommutation relations 

(2.13) 

The commutation relations among anyonic oscillators of type 6 can be obtained from 
the previous ones, (2.1 1)-(2.13), by replacing q by q-' and y by 6. This is due to the fact 

t Here, and in the following, we do not write the other generalized commutation relations which can be obtained 
by Hermitian conjugation. taking into account that q* = 4-'. 
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that S ordering can be obtained from y ordering by a parity transformation which, as is well 
known, changes the braiding phase q into q-' (see for instance [9]). 

To complete our discussion we compute the commutation relations between type y and 
type S oscillators. By using (2.4)-(2.6) one gets 

(ai(zd,  aj(yY))  = o VZ, Y; Vi, j (2.14a) 

{ai(z8),aj(yy)l t = B i j  S(z, y)q-[~="-~=,=l(ni(z)-!), (2.14b) 

It should be clear from the previous discussion that anyonic oscillators do not have 
anything to do with the q-oscillators introduced a few years ago [12,13]. The main reason is 
that the generalized commutation relations (2.11fi(2.14) are meaningful~only on an ordered 
lattice. Ordering is natural on a linear chain, where (2.11H2.14) could be postulated 
a priori, defining one-dimensional 'local anyons'. Instead, on a two-dimensional lattice 
ordering follows from the introduction of an angle function with its associated cut. In such 
a case oscillators are non-local objects, unlike the deformed q-oscillators which are local 
and can be defined in any dimension. 

3. A bosonization formula for quantum algebras 

By consfmction, the deformed Lie algebras reduce to the undeformed ones when the 
deformation parameter q goes to 1. When G is a classical Lie algebra the connection is 
even closer: there exists a set of non-trivial representitions of U,(G) which do not depend 
OP q and therefore 'ire common to the deformed and undeformed. enveloping algebrast. 
This happens when all the SU(2) subalgebras relevant to the simple roots are in the spin 0 
or 112 representation; we denote the set of representations with this property by R(0,lp). 

Another important fact is that the fundamental representations of classical Lie algebras, 
listed in figure I in [29], belong to the set %(o,r/z); by fundamental representation we mean 
an irreducible representation such that any other representation can be constructed from it 
by taking tensor products, or, equivalently, by repeated use of comultiplication. For these 
reasons it is possible to express the generators of the q-deformed Lie algebras in terms of 
the generators of the undeformed algebras in a fundamental representation. 

The plan of this section is as follows: first we show that the representations of U,(G) 
belonging to the set W(~ , JZ)  do not depend on the deformation parameter q;  then we write the 
'bosonization formula' which expresses the generators of &(G) in terms of an exponential 
involving the undeformed generators on each site of a two-dimensional lattice and the angle 
functions, O(z,  y), defined in section 2. 

The generalized commutation relations of y ( G )  in the Chevalley basis are 

[ H I ,  H J ]  = 0 (3.1~) 

[ H I ,  E:] = *a11 E: (3.1b) 

[E: ,  E;]  = S/f [q, (3.1~) 

(3.ld) 

$ Actually this properly holds also for E6 and E,, but not for the other exceptional algebras. The whole discussion 
of this section can thus be referred also to Ug(Eg) and U,(E?). 
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where HI are the generators of the Cartan subalgebra, E: are the step operators 
corresponding to the simple root CY{ and a11 denotes the Cartan matrix, i.e. 

I ,  J = 1,2, . . . , r;  r = rank(G). (aI,ffJ) all = (CY!,  CY,) = 2 - 
(ffl, ffl) 

In (3.1) we have used the notation 

(3.2) 

(3.3) 

[ml,! =[ml,[m-11,'..[11, . 

q, = q"'.uJ')/z 

where q is the deformation parameter. Moreover, q1 is defined as 

(3.4) 

so that 

ql"' = q J n J l .  (3.5) 

To complete the definition of %(G), the comultiplication A, the antipode S and the co-unit 
E are given by 

A ( H I )  = HI @ 1+ 1 8  HI 

A(E: )  = E:@qqrH' /Zfq1-Hr /2@ E: 

S(1) = 1 S(H1) =-HI (3.6) 

S(E:)  = -41 141 H,/zE*   HI/^ 

€(1) = 1 €(Hi) = € ( E : )  = 0. 

Let us now denote by hl and e: the generators HI and E: in a representation belonging 
to the set W ( O . I ~ ~ ) ;  then: 

(i) The eigenvalues of hr, i.e. the Dynkin labels of any weight, can be only 0 or fl, and, 

(ii) (e:)2 = 0. 
equivalently; 

Therefore, for any value of q, due to the definition (3.3) and the property (i) 

Moreover the deformed Serre relation (3.ld), which reads 
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becomes, due to the property (ii) 

(3.9) - (ql + 4;’) el i e ,  i el i- - 0 V I ?  J / a l ~  = - 1  

and is identically satisfied for I ,  J such that a1, = -2. 
This shows that, for the representations in WCO.~,~), the deformed commutation relations 

(3.1) are independent of the deformation parameter q and therefore coincide with the 
undeformed ones. Thus the deformed and undeformed classical Lie algebras share the 
same fundamental representations, because they belong to the set W(0,lp). 

All the other representations can be obtained from a fundamental one by repeated use 
of comultiplication; the difference between ordinary and deformed Lie algebras is just in 
the different rules of comultiplication. 

To make contact with section 2, we assign a fundamental representation to each point x 
of an ordered two-dimensional (or one-dimensional) lattice a; the local generators satisfy 
the following generalized commutations relations: 

(3.10a) 

(3.10b) 

[e:(.), &Y)] = 0 for z # Y .  (3.10e) 

From the previous discussion it should be clear that the relations (3.10) are just formally 
‘deformed’, as the fundamental representations of classical Lie algebras belong to the set 
9?(o,l,z); nevertheless, writing them as deformed commutation relations will be useful for 
our discussion. 

In fact the iterated coproduct for the deformed enveloping algebra reads 

where 

(3.11) 

(3.12a)~ 

E:(=) = n@ -hr(~)/~ @ e :( x ) q i h l ( ~ ) f z  (3.12b) 

and we know that consistency between product and coproduct implies that the generators 
HI and E: defined in (3.11) and (3.12) satisfy (3.1). given that hi(.) and e:(.) satisfy 
(3.10). By checking this explicitly, we can obtain an expression equivalent to (3.12b) but 
more useful in this context, as follows. 

Y<X ,~ z>z 

The check is trivial for (3.la) and (3.lb); to check ( 3 . 1 ~ )  one first needs the relation 
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which follows from the definition (3;12b), from the commutation relations (3.10b) and 
(3.10~) and from the identity (3.5); then one can complete the proof by complete induction, 
following [lo]. 

Finally the deformed Serre relation follows from (3.104 and from the braiding relations 

(3.14) 

which are a consequence of the definitions of (3.12b)and the commutation relations (3.10b) 
and (3.10e). Let us no’w introduce a new set of non-local densities HI(x), $(x) defined 
using the angles Oyr(x, y) and &(x, y) discussed in section 2 

(3.156) 

(3.1%) 

Using the properties of O,(x,y) and 6 ~ ~ ( x . y )  given by (2.1’), (2.3’) and (2.5), it is 
possible to show that E:(x) have exactly the same commutation and braiding relations as 
the operators defined in (3.126). that is (3.13) and (3.14) hold exactly as in the previous 
case. 

It is thus obvious that the global generators Hr and E: obtained by inserting the densities 
(3.15) instead of (3.12) into (3.11) still satisfy the deformed algebra of Uq(G). 

It is interesting to observe that the new generators (3.15) can also be introduced for a 
one-dimensional lattice. In that case it is enough to define, consistently with (2.1’), (2.3’) 
and (2.5) 

and 

(3.16a) 

(3.16b) 

to make (3.15) coincide with the iterated coproduct (3.12) (the relevance of quantum groups 
in one-dimensional chains has been investigated e.g. in [31]). 

As the fundamental representations of classical Lie algebras belong to the set % ( o , l / n ,  the 
generators h, and e: can be considered as generators both of the deformed and undeformed 
algebras. Therefore, on a one- or two-dimensional lattice, the ‘bosonization formula’, (3.1 1) 
and (3.15), actually gives the generators of the deformed Lie algebras in any representation 
in terms of the undefomed ones in the fundamental representation. 
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4. Anyonic construction of Uq(A,), U,(&) and %(Q) 

In this section we are going to show that for the algebras Uq(A,), Uq(B,) and U@,), 
(3.15) can be naturally written in terms of anyons. 

It is well known that the classical Lie algebras A,, B, and D, can be constructed ?i la 
Schwinger in terms of fermionic oscillators; we perform this construction on each site of the 
lattice R by using the oscillators ci(z) (i = .l, 2, . . . , N )  with the usual anticommutation 
relations (2.9). For the algebra A, one needs N = r + 1 oscillators so that 

e: (z )  = cj(z)  cr+i(z) 

e;(z)  = ct+l(z) cr (z )  (4.1) 

hr@) = ni(z) - nr+i(z) 
where I = 1.2, . . . , r. For the algebras B, and D,, one instead needs N = r oscillators. 
In particular for B, we have 

e+) = c , b )  cj+1(=) 

S(z) = n n(-l,.,(W) (4 .2~)  

is a sign factor introduced to make the generators commute at different points of the lattice 
(cf (3.10e)). For the algebra D, again we have 

y<s I=1 

= cj(z) cj+l(.) 

(4.3a) 

(4.3b) 
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It is a very easy task to check that the generators h, and e: defined in this way satisfy the 
commutation relations (3.10) with the appropriate Cartan matrices (see table 1). Moreover 
one realizes that properties (i) and (ii) of section 3 hold all step operators e:(x) have a 
vanishing square and the eigenvalues of the Cartan generators h ~ ( z )  can only be either 0 or 
il. For the sake of completeness we list in table 2 the highest weight vectors corresponding 
to the fundamental representations of figure 1, and in table 3 the relevant basis vectors in 
the Fock space generated by the fermionic operators cj(x). 

Table 1. Cartan matrices of simple Lie algebras 

:I 2 - 1  0 0 . .  0 0 0 
- I  2 - 1  0 . .  0 0 0 

0 - 1  2 - 1 . .  0 0 0 0 r [a,l = . . . . . . . . .  
. . . . . . . . .  I 0 0 0 o . . - 1  2 - 1  0 : I  

0 0 0 . .  0 - 1  2 - 1 1  \ :  0 0 0 . .  0 0 - 1  2 

2 - 1  0 0 . .  0 0 0 0 

0 - 1  2 - 1 . .  0 0 0 
-1 2 - 1  0 . .  0 0 0 

a [Erl = w j : : :  0 : 0 

'I 

O . . - I  2 - 1  
0 . .  0 - 1  2 - 1  
0 . .  0 -2 2 

2 - 1  0 0 . .  0 0 0 0 
- I  2 - 1  0 . .  0 0 0 0 

0 - 1  2 - 1 . .  0 0 0 0 

0, 0 0 . .  : : : 0 0 : -1 : 01 2 
o . . - 1  2 - 1  
0 . .  0 - 1  2 - 2  

2 - 1  0 0 . .  0 0 0 
-1 2 - 1  0 . .  0 0 0 

0 - 1  2 - 1 . .  0 0 0 

a = . . . . . . . . . .  
. . . . . . . . . .  

I l o  0 0 0 . .  0 - 1  2 0 
0 0 0 o . . - 1  2 - 1 - 1  

\ o  0 0 0 . .  0 - 1  0 2 1  

Obviously all representations can be obtained by repeated use of the coproduct, that is 
by summing over all sites of the lattice 

according to common use, here and in the following, we will always drop the symbol 8 of 
the direct product. 

The deformed algebras can be obtained in exactly the same way if the fermionic 
oscillators in (4.1H4.3) are replaced by anyonic ones. More precisely, following [IO], 
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Table 2. Highest weight vectors of the fundamental representations, 

~ Representation Weight vectors 

A,  CIIO) ~ ficitl0) 

B, fit$, 

D, fiCiil0) ncif io,  

i=l 

i=L 

cr CllO) 

,-I 

i=l i = L  

1 0  0 0 0  C.: -...- dim=Zr 

... 

Figure 1. Highest weights of the fundamental representations in the Dynkin bases and their 
dimensions. 

we write the raising operators~E:(z) in terms of the anyonic oscillators a&,), and the 
lowering operators E ; @ )  in terms of the anyonic oscillators ui(z~) defined in (2.6). The 
Cartan generators can be written using either ai(x,,) or'aj(xg) because 

(4.5) a/(zy)ui(zy) =q(za)ai(za) t = ci(x)ci(z) t =ni(z).  

In this way for all roots of A,, the long roots of B, and all roots of Dr apart from a,, one 
obtains 



H j ( d  = n j ( z )  - q+l(z). 

For the short root of B, one has 

(4.7) 

H&) = n,(z) + n,-l(z) - 1 

One easily realizes that (4.6X4.8) coincide with the ‘bosonization formulae’ (3.1%) and 
(3.15b) if the identification 

(4.9) 

is made. Tkerefore q j  = q for the long roots and q, = q1f2 for the short root of B,. 
Similarly the lowering operators are 

= eiux 

(4.6‘) 

(4.7’) 

(4.8‘) 
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Table 3. Basis vectors of the fundamental representations. 

813 

Representation . Basis vectors 

A, li) = C ~ I O )  fi = fl CJIO) i =  I. ..., r +  1 

.~ 
,+I 

1-1 
1P1 

B, 1.1. ..., nr) = ~ ( c $ ~ J I o )  " j  = 0, 1 
i=1 

i = 1, . . . , 2 r  I C, li) = ci IO) 

D, 

where anyons with the cuts .6 have been used. They coincide with those given in the 
'bosonization formula' (3.1%). 

This completes the proof that the deformed Lie algebras Uq(A,), U,(B,) and U,@,) 
are realized by the operators 

(4.10) 

where the operators H&) and 
(4.6)-(4.8) and (4.6'X4.8'). 

are defined with anyonic oscillators, according to 

5. Anyonic construction of y(C,) 

The anyonic realization of U,(C,) deserves special attention because the Schwinger 
construction of C, comes out naturally in terms of bosonic oscillators and therefore involves 
all the representations; instead the discussion of section 3 shows that the realization of a 
deformed Lie algebra by means of the 'bosonization formula' (3.15) makes use of the 
undeformed Lie algebra in a representation belonging to the set W(o,l,z>. 

To represent the algebra C, in terms of fermionic oscillators, we have to embed it into 
the algebra Azr.-] -[30]. By using 2r fermionic oscillators cu(z) for each point z of the 
lattice, we write 

for i = 
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for the long root a, of C,. It is easy to check that the operators hr(z), e:(=) defined in these 
equations satisfy the commutation relations (3.10) with the Cartan matrix appropriate for 'c, 
(see table 1) and q = 1. However for i # r the square of the operators $(z) does not vanish 
and therefore we cannot immediately apply the 'bosonization formula' (3.15) to construct 
the q-deformation of C,. In our fermionic realization the fundamental representation of 
C,, which is characterized by the Dynkin labels (1.0, . . . , 0) of its highest weight, acts on 
the 2r-dimensional vector space spanned by the states cL(z)c)lO) with a = 1,2, . . . ,2r (see 
table 3). This representation obviously belongs to the set W(o,1/2) since the only eigenvalues 
of hl(z) are 0 or fl and the square of the operators ef(z) vanishes for I = 1.2, . . . , r. 

In order to select this representation we have to impose a further condition on the 
fermionic operators c&); we perform a sort of Gutzwiller projection, using hard-core 
fermions satisfying the extra condition 

cdz)  cp(z) = CL(%) cfi(z) = 0~ (5.3) 

for any a, f i  = 1.2. ..., 2r. 
We must also observe that we cannot deform C, by simply replacing the fermionic 

oscillators in (5.1) with anyonic ones defined as in (2.6)-(2.7). In fact, for i # r the step 
operators constructed in this way would not have the form (3.156) and (3.1%) as the disorder 
operators contained in at ai+, would @ve an exponential different from those contained in 
CLLr-i a>-i+1. 

This difficulty can be simply overcome by requiring that the pair of anyons ar and 
a>-~+l (I = 1.2,. . . , r )  arise from the corresponding fermions coupled to the same Chem- 
Simons field with opposite charge. Therefore the disorder operators to be used in (2.6) are 

t 

for I = 1.2, . . . , r .  The anyonic oscillators defined in this way have the same generalized 
commutation relations discussed in section 2, and also non-trivial braiding relations between 
a1 and a>-r+l, for instance 

a ~ ( z ~ ) a > - - l + ~ ( y ~ ) + q  azr-~+~(~~)a&) = O  for > Y. 

With these definitions it is immediately possible to check that (3.15) is reproduced if 

~ : ( z )  aj(zy)aj+l(zy) +%-1(zy)a2r-j+l(zy) t 

E,'(") = ai+i(zg)aj(zs) +%-j+l(za)a>-j(zA) t ( 5 . 5 4  

for j = 1.2,. . . , r  - 1; and 

(5.56) 
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In tliese formulae, ni (s )  is given for any value of i by (4.5) and qr = q = eziz” for 
the long root and qj = q!lz for the short roots ( j  = 1,2,, . . , r - 1). The discussion of 
section 3 guarantees therefore that the operators 

satisfy the generalized commutation relations of the deformed algebra Uq(Cr). 

6. Final remarks 

In this paper we have discussed the anyonic realization of U,(G), G being any classical Lie 
algebra. For our construction the fact that the fundamental representations of U,(G) do not 
depend on the deformation parameter q has been crucial. Therefore we believe that Uq(E6) 
and U,(&) could also be realized in terms of anyons, possibly introducing a larger number 
of them, analogously to the q-oscillator construction of [17,18]. 

The situation is quite different for ~ ( E B ) ,  Uq(F4) and U,(Gz), because their 
fundamental representations are not in the class W~o,l/z). Therefore these deformed algebras 
do not share the fundamental representations with the undeformed ones. This is in contrast 
to the possibility of building anyonic realization of Uq(E8), Uq(F4) and Uq(Gz) of the 
type discussed in this paper. In fact their restriction to a singIe site would be a fermionic 
representation no longer dependent on the statistical parameter and therefore would be a 
representation of the undeformed algebra.: 

The whole treatment of this paper can be extended to one-dimensional chains replacing 
the angles @ys(s, y) and &,(q y) with =!L$TC as specified in (3.16). In such a case it is 
also possible to assign real values to the deformation parameter q.  as in one dimension it is 
no longer forced to be a pure phase. Our construction is also valid in that case; in fact for 
real q all the equations of the paper still hold, once the order of y and 8 are exchanged in 
the creation operators a/(x),  leaving unchanged the destruction operators a;(x). The case 
of real q is interesting~because it leads to unitary representations. 
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